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THOM SULANKE

Abstract. Examples of pseudo-minimal triangulations on various surfaces
are given.

1. Introduction

A triangulation of a closed surface is a simple graph embedded in the surface
so that each face is a triangle and so that any two faces share at most one edge.
Two triangulations T and T ′ of a surface are equivalent if there is a isomorphism
h with h(T ) = T ′. That is, if a, b, and c are vertices of T then ab is an edge of
T if and only if h(a)h(b) is an edge of T ′ and a face of T is bounded by the cycle
abc if and only if a face of T ′ is bounded by the cycle h(a)h(b)h(c). Two edges of a
triangulation are equivalent if there is an automorphism of the triangulation which
maps one edge into the other.

Let ac be an edge in a triangulation T and abc and acd be the two faces which
have ac as a common edge. The contraction of ac is obtained by deleting ac,
identifying vertices a and c, removing one of the multiple edges ab or cb, and
removing one of the multiple edges ad or cd. The edge ac of a triangulation T is
contractible if the contraction of ac yields another triangulation of the surface in
which T is embedded. If the edge ac is contained in a 3-cycle other than the two
which bound the faces which share it then its contraction would produce multiple
edges. So, for a triangulation T , not K4 embedded in the sphere, an edge of T is
not contractible if and only if that edge is contained in at least three 3-cycles. A
triangulation is said to be contractible if it has contractible edges. A triangulation
is said to be irreducible if it has no contractible edge.

Let ac be an edge in a triangulation T and abc and acd be the two faces which
have ac as a common edge. The diagonal flip of ac is obtained by deleting ac,
adding edge bd, deleting the faces abc and acd, and adding the faces abd and bcd.
An edge ac of a triangulation T is flippable if the diagonal flip of ac yields another
triangulation of the surface in which T is embedded. So ac is flippable if bd is not
already an edge. Two triangulations are equivalent under diagonal flips if one is
equivalent to a triangulation obtained from the other by a sequence of diagonal
flips.

The number of vertices of an irreducible triangulation can not be reduced by edge
contraction. Negami [11] defines a type of triangulation for which the number of
vertices can not be reduced by a combination of diagonal flips and edge contractions.
An irreducible triangulation is said to be pseudo-minimal if it is not equivalent
under diagonal flips to a contractible triangulation.
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Negami [13, 14] defines two types of triangulations which can easily be recog-
nized as pseudo-minimal. A triangulation is said to be frozen if it has no flippable
edges. An edge of a triangulation is said to be self-flippable if when it is flipped an
equivalent triangulation is produced. A triangulation is said to be isolated if it is
equivalent under diagonal flips only to itself. All the flippable edges of an isolated
triangulation are self-flippable.

A triangulation is said to be minimal if there are no triangulations of the same
surface with fewer vertices. It is clear that such a triangulation is also pseudo-
minimal. The number of vertices in a minimal triangulation for nonorientable
surfaces was determined by Ringel [16] and for orientable surfaces by Jungerman
and Ringel [5]. It is given for all surfaces except N2, N3, and S2 by the formula:

Vmin(S) =

⌈

7 +
√

49− 24χ(S)

2

⌉

For the three exceptions the value is one more than the value given by the
formula: Vmin(N2) = 8, Vmin(N3) = 9, and Vmin(S2) = 10.

A triangulation is said to be complete if the embedded graph is complete. By
the Euler formula Kn can be embedded as a triangulation in a surface S only
if n = (7 +

√

49 − 24χ(S))/2. So any complete triangulation must be minimal.
According to the “Map Color Theorem” [17] complete triangulations of Kn exist
for orientable surfaces if and only if n ≡ 0, 3, 4, or 7 mod 12 and n ≥ 4 and
complete triangulations of Kn exist for nonorientable if and only if n ≡ 0 or 1 mod
3 and n ≥ 6 and n 6= 7.

For a fixed surface we can take a topographic approach to the study of the
triangulations of that surface as suggested by Negami [12]. In such a view a trian-
gulation, T , is at the same elevation and next to another, T ′, if T ′ is obtained from
T by a diagonal flip. Also, a triangulation, T , is above a triangulation, T ′ if T ′ is
obtained from T by an edge contraction. The topographic “surface” in such a view
consists of the irreducible triangulations. Pseudo-minimal triangulations form the
bottoms of the valleys. We will call these “lakes”. A lake is the set of all pseudo-
minimal triangulations of a surface which are equivalent under diagonal flips to
some fixed pseudo-minimal triangulation. The elevation of a lake is the number
of vertices in any pseudo-minimal triangulation in the lake. Let Lmax(S) be the
maximum elevation of any lake of S which is the maximum number of vertices in
any pseudo-minimal triangulation of S.

We will order the lakes of S with elevation nv arbitrarily and designate the i-th
lake with elevation nv by L(S, nv, i). We will order the pseudo-minimal triangula-
tions in L(S, nv, i) arbitrarily and designate the j-th pseudo-minimal triangulation
in L(S, nv, i) by P (S, nv, i, j).

Let N(S) be the minimum value such that two triangulations T and T ′ are
equivalent under diagonal flips if the number of vertices in T and the number of
vertices in T ′ are equal and at least N(S). Negami [11] has shown that such a finite
value exists for any S.

Theorem 1. A surface S has exactly one lake if and only if

N(S) = Lmax(S) = Vmin(S).
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Proof: If N(S) = Lmax(S) = Vmin(S) then all pseudo-minimal triangulations
have N(S) vertices and are equivalent under diagonal flips. Thus there is only one
lake.

Negami [11] has shown that two triangulations of a closed surface with the same
number of vertices are equivalent under diagonal flips if they can be transformed
into a common triangulation by diagonal flips and contraction of edges. If a surface
has only one lake then every triangulation of that surface can be transformed into
any triangulation in that lake by diagonal flips and contraction of edges.

Theorem 2. If a surface S has more than one lake then

N(S) ≥ Lmax(S) + 1 ≥ Vmin(S) + 1.

Proof: Suppose a surface, S, has more than one lake. We will show that there
are two triangulations of S with Lmax(S) vertices which are not equivalent under
diagonal flips and so N(S) ≥ Lmax(S) + 1. There is pseudo-minimal triangulation
T1 in a lake of elevation Lmax(S) and another triangulation, T2, in some other lake.
The number of vertices in T2 is no more than the number of vertices in T1. If T1 and
T2 have the same number of vertices then they are not equivalent under diagonal
flips since they are in different lakes. If T2 has fewer vertices than T1 then there
is a triangulation T +

2 which has the same number of vertices as T1 and which can
be transformed into T2 by contracting edges. Since T1 is pseudo-minimal T1 is not
equivalent under diagonal flips to T +

2 which is contractible.

2. Finding pseudo-minimal triangulations

The irreducible triangulations of S0, S1, S2, N1, N2, N3, and N4 have been
determined [18] [1] [7] [8] [20] [19] have been determined. The complete sets of
pseudo-minimal triangulations were determined for these surfaces using the com-
plete lists of irreducible triangulations.

Lutz [9] generated for all surfaces all the triangulations with 10 or fewer vertices.
Sulanke and Lutz [21] generated for all surfaces all the triangulations with 12 or
fewer vertices. Using these results we were able to check that the table is complete
for pseudo-minimal triangulations up to 12 vertices.
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Surface Vmin t Number of Pseudo-minimal
S0 4 0 1 = (1)4
N1 6 0 1 = (1)6
S1 7 0 1 = (1)7
N2 8 4 6 = (6)8
N3 9 6 133 = (133)9
S2 10 9 865 = (865)10
N4 9 3 37 = (32 + 3 + 2)9
N5 9 0 2 = (2 ∗ 1)9
S3 10 3 20 = (13 + 5 + 2 ∗ 1)10
N6 10 3 1022 = (363 + 297 + 253 + 24 + 12 + 2 ∗ 11 + 8 + 6 + 2 ∗

5 + 2 ∗ 4 + 3 ∗ 3 + 4 ∗ 2 + 2 ∗ 1)10
N7 10 0 34 = 14 + 20 = (14 ∗ 1)10 + (8 + 2 ∗ 4 + 3 + 1)11
S4 11 4 823 = 821+2 = (786+9+2∗4+5∗3+3∗1)11+(2∗1)12
N8 11 4 295302 = 295291+ 11 = (290756 + .. + 257 ∗ 1)11 + (4 + 3 +

4 ∗ 1)12
N9 11 1 9864 = 5982 + 3882 = (211 + .. + 1336 ∗ 1)11 + (2 ∗ 48 +

.. + 65 ∗ 1)12

3. The examples

The figures of triangulations shown here consist of four parts. On the left of
each figure is a polygon representing the triangulation. The polygons used for the
projective plane, torus, and Klein bottle are those commonly used for these surfaces
and are taken from the original references. For the other surfaces no attempt is
made to fit any standard form. To see that the polygons represent the stated
surface several checks must be made. Each boundary edge of the polygon must
appear exactly twice. If both representations of an edge on the boundary have the
same orientation going around the boundary then the surface is nonorientable. The
order of the neighbors around a vertex must agree with the rotation which is given
in the upper middle of each figure. The thicker lines represent flippable edges.

In the lower middle of each figure is a list of generators for the automorphism
group of the triangulation. These generators can be used to check the claims
concerning isomorphic edges, etc. If the automorphism group is trivial then no
generators are shown. The generators were produced by nauty [10] by first replacing
the faces with new vertices of degree 3.

On the right of each figure is the complement of the embedded graph. The tri-
angulations which we are considering are dense as graphs so their complements are
sparse. The complements are included for two reason. First, they are sometimes
useful in checking that two triangulations are nonequivalent. Nonequivalence of
the complements is usually easier to recognize than the nonequivalence of the tri-
angulations as graphs. Nonequivalent graphs provide nonequivalent triangulations.
Second, when flipping an edge the new edge that is added to the triangulation must
come from the complement. It is usually quicker to check the complement for avail-
able additions than to check the triangulation for flippable edges. Two vertices of a
triangulation are opposite each other across an edge not containing them if they are
on faces which share that edge. An edge bd from the complement allows a flip if b
and d are opposite each other in the triangulation across a flippable edge ac. b and
d can be opposite each other across many edges or none at all. The number, if any,
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(cd)

Figure 1. P (S0, 4, 1, 1) = K4

shown on an edge in the drawing of the complement is the number of edges in the
triangulation which can be flipped and replaced by that edge. The total of these
edge numbers must equal the number of flippable edges shown in the representation
of the triangulation.

We now consider in turn several different surfaces and some of the properties of
the pseudo-minimal triangulations of each surface.

4. S0, the sphere

By Steinitz’ Theorem [18] all triangulations of the sphere can be generated from
the triangulation of K4 by a sequence of vertex splittings. K4 which is shown in
Figure 1 is thus the only irreducible triangulation of the sphere. The sphere has
just one lake which contains only K4. N(S0) = Lmax(S0) = Vmin(S0) = 4.

5. N1, the projective plane

Barnette [1] showed that all triangulations of the projective plane can be gen-
erated from the triangulations shown in Figs. 2 and 3 by a sequence of vertex
splittings. These two triangulations are thus the only irreducible triangulations of
the projective plane. The triangulation in Figure 3 is not pseudo-minimal since
if we flip dg then ag becomes a contractible edge. Thus P (N1, 6, 1, 1) in Figure 2
is the only pseudo-minimal triangulation of the projective plane. P (N1, 6, 1, 1) is
also complete. The projective plane has just one lake which contains only the
triangulation P (N1, 6, 1, 1). N(N1) = Lmax(N1) = Vmin(N1) = 6.

6. S1, the torus

Dewdney [3] showed that every triangulation of the torus is equivalent under
diagonal flips to a triangulation which can then be reduced by a sequence of edge
contractions to the triangulation P (S1, 7, 1, 1) in Figure 4. Thus P (S1, 7, 1, 1) is the
only pseudo-minimal triangulation of the torus. P (S1, 7, 1, 1) is also complete. The
torus has just one lake which contains only P (S1, 7, 1, 1). N(S1) = Lmax(S1) =
Vmin(S1) = 7.
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Figure 2. P (N1, 6, 1, 1) = K6
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Figure 3. The irreducible triangulation of the projective plane
which is not pseudo-minimal
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Figure 4. P (S1, 7, 1, 1) = K7
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Figure 5. P (N2, 8, 1, 4) = Kh4
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Figure 6. P (N2, 8, 1, 6) = Kh6

7. N2, the Klein bottle

Negami and Watanabe [15] showed that every triangulation of the Klein bottle
is equivalent under diagonal flips to a triangulation which can then be reduced by a
sequence of edge contractions to the triangulation Kh6 in Figure 6. This means that
Kh6 is pseudo-minimal and is in the only lake of the Klein bottle. Lawrencenko and
Negami [8] determined all the pseudo-minimal triangulations in this lake which are
shown in Figs. 5 through 10. Kh3 has been redrawn to more obviously show that it
can be obtained from Kh1 with a single flip. N(N2) = Lmax(N2) = Vmin(N2) = 8.

8. N3

For N3 there is only one lake with 133 pseudo-minimal triangulations. Recall
that N3 is one of the three exceptions to the formula for Vmin. Vmin(N3) is one
larger than is required by the Euler formula.

Two of these triangulations are shown in Figures 11 and 12. All 133 are shown
in Figure 13. Due to space limitation only the unlabeled polygons corresponding
to the triangulations are shown. Each polygon in Figure 13 is labeled the same
as the two shown in Figures 11 and 12. In Figure 13 if two polygons are adjacent
and not separated by a dark line then one can be obtained from the other by a
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Figure 7. P (N2, 8, 1, 5) = Kh5
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Figure 8. P (N2, 8, 1, 2) = Kh2
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Figure 9. P (N2, 8, 1, 1) = Kh1

single diagonal flip. Since the maze formed by the dark lines is connected we see
that any two polygons connected by a sequence of diagonal flips. Thus the 133
triangulations are equivalent under diagonal flips. In order to check the claim that
these 133 triangulations do form a lake it is necessary to check that each polygon
represents a unique triangulation of N3 and that there are no other triangulations
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Figure 10. P (N2, 8, 1, 3) = Kh3 (redrawn)
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Figure 11. P (N3, 9, 1, 1)
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Figure 12. P (N3, 9, 1, 2)

which are equivalent under diagonal flips to any of these. This was done when the
triangulations were generated as described in Section 2.

These 133 triangulations are all of the pseudo-minimal triangulations of N3. So
N(N3) = Lmax(N3) = Vmin(N3) = 9.



10 THOM SULANKE

Figure 13. L(N3, 9, 1)

9. S2, the double torus

For S2 there is only one lake with 865 pseudo-minimal triangulations. Again
S2 is one of the three exceptions to the formula for Vmin as was shown in [4].
In [4] Huneke also provides an example of a pseudo-minimal triangulation of S2

with 10 vertices. This triangulation is shown here in Figure 14. By flipping ef ,
cg, and bf we get Figure 15 and by flipping dj, ej, and df we get Figure 16.
These three pseudo-minimal triangulations from L(S2, 10, 1) have been redrawn in
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Figure 14. P (S2, 10, 1, 1) from Huneke
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Figure 15. P (S2, 10, 1, 2)
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Figure 16. P (S2, 10, 1, 3)

Figures 17 through 19 in an attempt to better show their automorphisms. The 865
triangulations of S2 with 10 vertices are all of the pseudo-minimal triangulations
of S2. So N(S2) = Lmax(S2) = Vmin(S2) = 10.
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Figure 17. P (S2, 10, 1, 1) redrawn
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Figure 18. P (S2, 10, 1, 2) redrawn
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Figure 19. P (S2, 10, 1, 3) redrawn

10. N4

Finally a surface with more than one lake. There are three lakes with 32, 3, and
2 triangulations. We will show here that there are at least three lakes. None of the
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Figure 20. P (N4, 9, 3, 1)

i f b d

i

h

b

d

a

hbfa

h

i

f

a

d

g

c

e

a ifhbcde

b igfcahd

c fbadgeh

d ibhgcaef

e iadfgch

f idegbcha

g ihdcefb

h iecfabdg

i faehgbd

(abi)(cge)(dfh)

1

1

1
i c

b

e

a

g

Figure 21. P (N4, 9, 3, 2)

lakes have just one pseudo-minimal triangulation so there are no frozen or isolated
triangulations.

Figures 20 and 21 show the two triangulations in L(N4, 9, 3). The edge fg
of P (N4, 9, 3, 2) is equivalent to all three of the flippable edges of P (N4, 9, 3, 2).
Flipping fg produces P (N4, 9, 3, 1). P (N4, 9, 3, 1) has three nonequivalent flip-
pable edges. Two edges, eh and cd, are self-flippable while the third, be, produces
P (N4, 9, 3, 2) when flipped. So P (N4, 9, 3, 1) and P (N4, 9, 3, 2) are equivalent under
flipping to no other triangulations.

Figures 22, 23 and 24 show the three triangulations in L(N4, 9, 2). Consider
P (N4, 9, 2, 3). The edge ad is equivalent to all three of the flippable edges. Flip-
ping ad produces P (N4, 9, 2, 1). Now consider P (N4, 9, 2, 1). Flipping ce produces
P (N4, 9, 2, 3). Flipping bh produces P (N4, 9, 2, 2). This can be seen by examining
the differences between the rotations of P (N4, 9, 2, 1) and P (N4, 9, 2, 2). Flipping
bh removes h from the rotation of b and removes b from the rotation of h. The new
edge ad in P (N4, 9, 2, 2) is obtained by adding d in the rotation of a between b and h
and adding a in the rotation of d between b and h. Finally consider P (N4, 9, 2, 2).
Flipping ad, which is equivalent to fi, produces P (N4, 9, 2, 1) again. Edge eg is
self-flippable.

Figure 25 shows P (N4, 9, 1, 6) yet another pseudo-minimal triangulation of N4.
That it is unique can be seen by comparing its complement with those of the pseudo-
minimal triangulations in L(N4, 9, 2) and L(N4, 9, 3). Since it is not in L(N4, 9, 2)
and not in L(N4, 9, 3) there must be at least three lakes for N4.
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In Figure 26 is shown a sequence of operations for obtaining P (N4, 9, 1, 6) from
P (N4, 9, 2, 1). Since these two pseudo-minimal triangulations are in different lakes
a simple sequence of flips is not enough. Starting in the lower left of Figure 26 we
move up (increase the number of vertices by one) from P (N4, 9, 2, 1) by splitting the
vertex i to create a new vertex j. The triangulation in the upper left of Figure 26
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Figure 26. Portage from P (N4, 9, 2, 1) to P (N4, 9, 1, 6)

is not irreducible since the edge ij can be contracted to obtain P (N4, 9, 2, 1). If
the edge fh is flipped we obtain the irreducible triangulation in the upper center of
Figure 26 maintaining the same number of vertices. If the edge fe is then flipped we
obtain the triangulation in the upper right of Figure 26 also with the same number
of vertices. This triangulation is not irreducible since we can contract the edge fj
and obtain P (N4, 9, 1, 6) in the lower right of Figure 26. This contraction again
reduces the number of vertices to the elevation of the lakes. We call this sequence
of triangulations a portage from L(N4, 9, 2) to L(N4, 9, 1).

A portage from lake L1 to lake L2 of length n is a sequence of triangulations
(T1, T2, ..., Tn) where an edge of T1 can be contracted to obtain a pseudo-minimal
triangulation of L1, an edge of Tn can be contracted to obtain a pseudo-minimal
triangulation of L2, Ti is irreducible for i = 2, .., n−1, and Ti is obtained from Ti−1

by flipping an edge for i = 2, .., n. We allow n = 1 or n = 2. However, no such
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short portages were found for any surface. T1 and Tn are the ends of the portage.
The portage graph of a surface has the lakes of the surface as vertices. A pair of
lakes is an edge in the portage graph if there is a portage between the lakes. The
weight of an edge in the portage graph is the minimum length of portages between
the two lakes which are the edge’s ends.

Theorem 3. If a surface S has more than one lake and the portage graph of S is

connected then

N(S) = Lmax(S) + 1.

Proof: Suppose that a surface S has more than one lake and that the portage
graph of S is connected. From Theorem 2 we have N(S) ≥ Lmax(S) + 1. We show
that N(S) ≤ Lmax(S)+1. All the lakes must have the elevation of Lmax(S) Suppose
T is a triangulation with Lmax(S) + 1 vertices. T is not pseudo-minimal so it is
equivalent under diagonal flips to a triangulation Ta which is contractible to some
pseudo-minimal triangulation in a lake La. Ta is equivalent under diagonal flips to
all triangulations which are contractible to some pseudo-minimal triangulation in
a lake La. In particular, Ta is equivalent under diagonal flips to the La end of all
portages beginning at lake La. Since the two ends of any portage are equivalent
under diagonal flips by definition Ta is also equivalent under diagonal flips to the
non-La end of all portages beginning at lake La. Continuing in this way we see that
T is equivalent under diagonal flips to every triangulation which is contractible to
some pseudo-minimal triangulation. So any two triangulation with Lmax(S) + 1
vertices are equivalent under diagonal flips.

Figure 27 shows a second pseudo-minimal triangulation in L(N4, 9, 1). It can
be obtained from P (N4, 9, 1, 6) by flipping in any order the edges ag, ce, and dg.
Figure 28 shows a portage from L(N4, 9, 3) to L(N4, 9, 1) of length 3 which begins
over P (N4, 9, 3, 1) and ends over P (N4, 9, 1, 15). The operations are: split vertex c,
flip edge dg, flip edge gh, and contract edge gj. The portages which we have shown
are not the only ones. However, there are no shorter ones between the respective
lakes. The shortest portage from L(N4, 9, 2) to L(N4, 9, 3) has length 8.

The minimal spanning tree of the portage graph of N4 is the path, P3 where
both edges have weight 3. These 37 triangulations are all of the pseudo-minimal
triangulations of N4. So N(N4) = Lmax(N4) + 1 = Vmin(N4) + 1 = 10.
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Figure 28. Portage from P (N4, 9, 3, 1) to P (N4, 9, 1, 15)

11. N5

We have now examined all of the surfaces for which all of the pseudo-minimal
triangulations have been determined. We will now examine the results found by
the algorithm described in Section 2.

Two frozen pseudo-minimal triangulations were the only ones found for N5.
Each fills its own lake. The two pseudo-minimal triangulations and the connecting
portage are shown in Figure 29. Since any pseudo-minimal triangulations with 9
vertices on N5 must be complete we have from [2] that these are the only pseudo-
minimal triangulations with 9 vertices. There are no pseudo-minimal triangulations
with 10 vertices and we conjecture that there are no pseudo-minimal triangulations
with greater than 10 vertices. If this is so then N(N5) = Lmax(N5)+1 = Vmin(N5)+
1 = 10.

12. S3

There were four lakes found for S3. Two of the lakes, L(S3, 10, 3) and L(S3, 10, 4),
each consists of one isolated pseudo-minimal triangulation. One of these isolated
pseudo-minimal triangulation, P (S3, 10, 3, 1), is frozen and is shown in Figure 30.
It is K10 − K3 and its rotation is a relabeled version of rotation (2.8) in [17]. By
Ringel’s construction, vertices h, i, and j are separated by two other vertices in each
line of the rotation in which they appear. Thus no pair of the three vertices are
opposite each other and P (S3, 10, 3, 1) is frozen. The construction for the orientable
case 10 of [17] provides a triangulation of K12s+10 − K3 in S(4s+3)(3s+1) for every
s ≥ 1 with a rotation in which the vertices of K3 are separated by at least two
other vertices in each line of the rotation in which they appear. Korzhik and Voss
[6] provide more than one such construction for s ≥ 2. So for s ≥ 2 we have
N(S(4s+3)(3s+1)) ≥ Vmin(S(4s+3)(3s+1)) + 1 = 12s + 11.
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Figure 29. Portage from P (N5, 9, 1, 1) to P (N5, 9, 2, 1)
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The other isolated pseudo-minimal triangulation of S3, P (S3, 10, 4, 1), is shown
in Figure 31. It is nonfrozen as its two equivalent flippable edges are self-flippable.
That the two edges, hi and be, are equivalent can be seen from the generator for
the automorphism group of the triangulation. If we flip hi to get aj and relabel
the vertices with the permutation, (ai)(cf)(dg)(hj), we obtain a reflection of the
original drawing. P (S3, 10, 4, 1) is the smallest nonfrozen isolated pseudo-minimal
triangulation of an orientable surface.

Figure 32 shows a third pseudo-minimal triangulation of S3. It is not isolated.
We have shown three pseudo-minimal triangulations of S3 each from a different
lake. We will not show that there are at least four lakes. The portage graph
of S3 is K4. The minimal spanning tree is P4 with each edge having a weight
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of 3. We conjecture that these 20 triangulations which are all of the minimal
triangulations are also all of the pseudo-minimal triangulations. If this is so then
N(S3) = Lmax(S3) + 1 = Vmin(S3) + 1 = 11.

13. N6

For N6 there were 1022 pseudo-minimal triangulations found in 22 lakes. As
with S3 two of the pseudo-minimal triangulations are isolated. One is frozen and
is shown in Figure 33 while the other is not frozen and is shown in Figure 34.
P (N6, 10, 22, 1) is the smallest nonfrozen isolated pseudo-minimal triangulation of
a nonorientable surface.

The portage graph of N6 is connected. All edges of the minimal spanning tree
have weight of 3 except for one edge. All portages from one of the lakes have weight
4 or more. We conjecture that there are 1022 pseudo-minimal triangulations in 22
lakes. If this is so then N(N6) = Lmax(N6) + 1 = Vmin(N6) + 1 = 11.

14. N7

The 14 complete triangulations of N7 [2] with 10 vertices were found. Exam-
ples of pseudo-minimal triangulations with 11 vertices were also found. These 20
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pseudo-minimal triangulations are not minimal. They are the smallest nonminimal
pseudo-minimal triangulations found for any surface. One isolated nonminimal
pseudo-minimal triangulations was found. It is frozen and is shown in Figure 35.
There are also nonisolated nonminimal pseudo-minimal triangulations. To show
there existence we display in Figures 36 through 38 the three pseudo-minimal tri-
angulations from L(N7, 11, 4) which are equivalent under diagonal flips to each
other but are not equivalent under diagonal flips to any other triangulations.

The portage graph is not connected because N7 has lakes at two elevations. The
portage graph consists of two connected components. The portage graph restricted
to lakes of elevation 10 has a minimal spanning tree with weights ranging from 3 to
12. The portage graph restricted to lakes of elevation 11 has a minimal spanning
tree with weights ranging from 10 to 13. It is possible to transform any pseudo-
minimal triangulation with 11 vertices into a pseudo-minimal triangulation with
10 vertices by splitting a vertex, a sequence of diagonal flips, and then two edge
contractions.

We conjecture that the pseudo-minimal triangulations which were found are all of
the pseudo-minimal triangulations of N7. If this is so then N(N7) = Lmax(N7)+1 =
Vmin(N7) + 2 = 12.
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Figure 36. P (N7, 11, 4, 1)

15. S4

For S4 there were 821 pseudo-minimal triangulations with 11 vertices found in
12 lakes. The 3 isolated pseudo-minimal triangulations with 11 vertices are frozen.
The minimal spanning tree for these lakes exists and the weight of all edges of this
tree is 3. There were 2 frozen triangulations with 12 vertices found. The portage
graph restricted to lakes of elevation 12 is a single edge with weight 3. It is possible
to transform either pseudo-minimal triangulation with 12 vertices into a pseudo-
minimal triangulation with 11 vertices by splitting a vertex, a sequence of diagonal
flips, and then two edge contractions.

We conjecture that the pseudo-minimal triangulations which were found are all of
the pseudo-minimal triangulations of S4. If this is so then N(S4) = Lmax(S4)+1 =
Vmin(S4) + 2 = 13.
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Figure 38. P (N7, 11, 4, 3)

16. Other surfaces

As the genus of the surface increases it becomes more difficult to find a set of
pseudo-minimal triangulations which appear to be all for that surface. At least
two frozen pseudo-minimal triangulations were found for all surfaces with 11 <=
Vmin <= 17. We conjecture that N(S) = Vmin(S) only if S is one of the surfaces:
S0, S1, S2, N1, N2, or N3.

17. Labeled triangulations

If a triangulation has n vertices we obtain a labeled triangulation by assigning
a unique label to each vertex. We will use letters for the labels. Two labeled
triangulations T and T ′ of a surface are equivalent if there is a isomorphism h with
h(T ) = T ′ which preserves the labels. That is, if a is a vertex of T then the label
assigned to a is the label assigned to the vertex h(a) of T ′.
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For a triangulation T with n vertices all of the labeled triangulations obtained
from T form a symmetric group on n objects. The subgroup of labeled triangula-
tions obtained from T which are equivalent is the automorphism group of T .

Two labeled triangulations are equivalent under diagonal flips if one is equivalent
as a labeled triangulation to a labeled triangulation obtained from the other by a
sequence of diagonal flips.

Suppose that ab is a flippable edge of a labeled triangulation T , that the labeled
triangulation T ′ is obtained by flipping ab in T and replacing it with the edge cd in
T ′, and that h is an automorphism of T . Then the two edges ab and h(a)h(b) of T
are equivalent. By flipping the edge h(a)h(b) of T we obtain a labeled triangulation
T ′′ which is equivalent as an unlabeled triangulation to T ′. h maps the labels of T ′

onto the labels of T ′′. If we start with T ′, flip cd to obtain T , and then flip h(a)h(b)
to obtain T ′′ we see that the labeled triangulations T ′ and T ′′ are equivalent under
diagonal flips. So the automorphism group of T can be used to relabel the vertices
of T ′ to obtain other labeled triangulations which are equivalent under diagonal
flips to T ′. In general, the vertices of a labeled triangulation can be relabeled
to obtain other labeled triangulations which are equivalent under diagonal flips
by using the automorphism group of any triangulation which is equivalent under
diagonal flips. If we consider a set of labeled triangulations which are equivalent
under diagonal flips and show that the generators of the automorphism groups of
these triangulations generate the symmetric group on the labels then all the possible
labelings of these triangulations are equivalent under diagonal flips.

Let NL(S) be the minimum value such that two labeled triangulations T and T ′

are equivalent under diagonal flips if the number of vertices in T and the number
of vertices in T ′ are equal and at least NL(S). Negami [12] has shown that N(S) ≤
NL(S) ≤ N(S) + 1 and that if Vmin(S) < N(S) then N(S) = NL(S).

We will examine NL(S) when Vmin(S) = N(S). In this case, from Theorem 1
S has exactly one lake. The surfaces which we have examined which do or might
meet this criteria are S0, N1, S1, N2, N3, and S2.

Negami [12] has shown that NL(S0) = N(S0) = 4, NL(N1) = N(N1) + 1 = 7,
and NL(S1) = N(S1) + 1 = 8.

We will show that NL(N2) = N(N2) = 8. From Figure 8 a generator of the
automorphism group of Kh2 is h1 = (ac)(dh)(eg) and from Figure 10 two generators
of the automorphism group of Kh3 are h2 = (bc)(ef)(gh) and h3 = (ahdg)(be)(cf).
h2h3h1 = (ade)(bf)(cgh), (h2h3h1)

3 = (bf), h2h3h1h2h1 = (ahbgecdf). Thus
combining the three permutations h1, h2, and h3 we can produce a 2-cycle and
an n-cycle and so these three permutations generate the symmetric group on the
8 labels of the minimal triangulations of N2. Therefore all labeled triangulations
which are obtained by labeling the 6 minimal triangulations of N2 are equivalent
under diagonal flips so NL(N2) = N(N2) = 8. In particular, any relabeling of the
vertices of Kh2 can be obtained by some sequence of the operations: redraw Kh2
maintaining the structure shown in Figure 8 which permutes the labels with h1;
flip edges to obtain Kh3 from Kh2; redraw Kh3 maintaining the structure shown
in Figure 10 which permutes the labels with some combination of h2 and h3; and
flip edges to obtain Kh2 from Kh3.

We will show that NL(N3) = N(N3) = 9. Figure 12 can be obtained from
Figure 11 by flipping bi, ah, ci, and df . From Figure 11 the generator of the
automorphism group of P (N3, 9, 1, 1) is h1 = (abd)(cfe)(ghi) and from Figure 12
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the generator of the automorphism group of P (N3, 9, 1, 2) is h2 = (ag)(be)(dh).
h1h2 = (aecfbhi)(dg) and (h1h2)

7 = (dg), a 2-cycle. h1h1h2 = (ah)(bgidefc) and
(h1h1h2)

2(h1h2)
4 = (abfeihcgd), an n-cycle. So h1 and h2 generate the symmetric

group on the 9 labels of P (N3, 9, 1, 1) and thus any member of L(N3, 9, 1). If
L(N3, 9, 1) is the only lake for N3 then we have just shown that NL(N3) = 9 which
would also be the value for N(N3). If there is more than one lake for N3 then
Vmin(N3) < N(N3) and so NL(N3) = N(N3).

In a similar way NL(S2) = N(S2) = 10. From Figures 17 through 19 the re-
spective generators of the automorphism groups of P (S2, 10, 1, 1), P (S2, 10, 1, 2),
and P (S2, 10, 1, 3) are h1 = (ai)(bj)(ce)(dh)(fg), h2 = (ai)(bh)(dj), and h3 =
(ab)(ci)(fh). h3h1h3h2h1 = (ahfbeicdgj), a 10-cycle. h3h2h3h1h3h2h1 = (afeid)(bch)(gj)
so (h3h2h3h1h3h2h1)

15 = (gj), a 2-cycle. Thus, h1, h2, and h3 generate the sym-
metric group on the 10 labels of P (S2, 10, 1, 1).
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