Physics with 2 fb$^{-1}$

Part II

Outline:

- Doubling of data?
- Top
- Heavy Flavor
- QCD
- Needs?

Thanks to the true experts!

26 August 2006
Doubling the data?

Aren't we just doubling the data?

p17
1 fb$^{-1}$
p20
2 fb$^{-1}$
Doubling the data?

Aren't we just doubling the data?

Layer 0 SMT, AFEIIlt

Trigger upgrade capabilities

...but mitigated by high luminosity running

In many cases, no

Physics Improvement

1 fb⁻¹ → 2 fb⁻¹

2 fb⁻¹

2 fb⁻¹

p17 → p20

Time
• In many cases, "worth" more than a doubling of the data

- b-tagging with Layer 0 SMT
 Know level of improvement? Not yet, but has to improve

- Even more of a gain for secondary vertices, softer tracks, estimates later
Run 2b Goals

James Bond Rule of Thumb:

\[m_W \text{ roughly equiv. to } 0.007 \cdot m_t \]
Top Quark Mass

D0 Lepton + jets: $170.6^{+4.1}_{-4.5}$ (stat. +JES) $^{+1.2}_{-1.8}$ (syst) GeV

173.8 ± 3.6 (stat. +JES) $^{+2.2}_{-2.0}$ (syst) GeV

370 pb$^{-1}$

For illustrative purposes:

~Now (~no JES)
Top Quark Mass

D0 Lepton + jets: 170.6 $^{+4.1}_{-4.5}$ (stat. +JES) $^{+1.2}_{-1.8}$ (syst) GeV

173.8 ± 3.6 (stat. +JES) $^{+2.2}_{-2.0}$ (syst) GeV

Likelihood as function of m_{top} and energy scale correction fix M_W

For illustrative purposes:

- If include prior JES knowledge

Total Top Mass Error [GeV]

Integrated Luminosity [fb$^{-1}$]

~1.5 stat

Worse you do

Thanks to Gaston Gutierrez
Top Quark Mass

D0 Lepton + jets: $170.6^{+4.1}_{-4.5} \text{(stat. +JES)}^{+1.2}_{-1.8} \text{(syst)}$ GeV

$173.8 \pm 3.6 \text{(stat. +JES)}^{+2.2}_{-2.0} \text{(syst)}$ GeV

370 pb$^{-1}$

Likelihood as function of m_{top} and energy scale correction fix M_W

For illustrative purposes:

~Now

Total Top Mass Error [GeV]

Integrated Luminosity [fb$^{-1}$]

~1.5 stat

Worse you do
Top Quark Mass

D0 Lepton + jets: $170.6^{+4.1}_{-4.5}$ (stat. +JES) $^{+1.2}_{-1.8}$ (syst) GeV

173.8 ± 3.6 (stat. +JES) $^{+2.2}_{-2.0}$ (syst) GeV

Thanks to Gaston Gutierrez

For illustrative purposes:

Total Top Mass Error [GeV]

- 370 pb$^{-1}$
 - ~ 4.0
- 1 fb$^{-1}$
 - ~ 2.5
- 2 fb$^{-1}$
 - ~ 2.0
Top Quark Mass

- plus any future improvements will mean getting there sooner, e.g. optimization of "working point"

\[\Delta m_{\text{top}}(\text{stat}) = \frac{\Delta(m_{\text{top}})}{\sqrt{N}} \]

- \(\sim 15\% \) reduction in error

- and this does not yet include Layer 0 improvement!
Summer 2006, indirect, take out top mass:

- High Q^2 except m_t
- 68% CL

Excluded

4.0, 2.5, 2.0 GeV error bands
Impact depends on central value!

1 fb^{-1}
2 fb^{-1}

definitely won't be a large gain, enter a long assault on systematics.
All Jets mode:

Two SVT b jets $p_T > 45$ GeV

- 4 jets $p_T > 20$ GeV
- jet $p_T > 15$ GeV |$\eta|<2.4$
- all jets taggahia
- b JES v6.3 (extended)
- Candidates
- Random $+$ Jet Events
- bckg norm: $m_j < 50$ GeV
- $\sigma = 12.4 \pm 1.1$ pb

- b-jet-jet mass [GeV]

Two SVT b jets $p_T > 45$ GeV

- 4 jets $p_T > 20$ GeV
- jet $p_T > 15$ GeV |$\eta|<2.4$
- all jets taggahia
- b JES v6.3 (extended)
- Candidates
- Random $+$ Jet Events
- bckg norm: $m_j < 50$ GeV
- $\sigma = 12.5 \pm 1.1$ pb

- jet-jet mass [GeV]

Finish asap

Moving on

- p17
- p20 (more automated input efficiencies, TRFS?)

Possibly consider it a transition point to focusing more on all-jets and dilepton modes to combine & check:

- any problems with the lepton + jets?
- new physics causing differences?

Have started on p20

- looked at $e +$ jets p17 vs. p20 data
- p20 single top selection...
Improvements?

- Luminosity from W's (2-3%)
- Measure ratio of $ttbar$ to W cross section
- Use large data sets to constrain model assumptions (W fractions, gluon radiation, …)
- Combine channels (here and for mass, plan ahead of time)

- Relatively slow improvement of precision of fundamental parameters after p17, increasing importance of other top properties

![Graph showing Luminosity and Statistical uncertainty](image)

- Luminosity
- Statistical
- Jet Energy Scale
- W heavy flavor fractions
Single Top, V_{tb}

- Extrapolations did not consider systematic errors; but
- improvements in object reconstruction and analysis discrimination
- Conservative: evidence possible with 1 fb$^{-1}$ likely with 2 fb$^{-1}$ ("sweet spot")
Measuring a single parameter with error, fits to distributions, e.g., helicity fraction $f_+.

- Shrink the stat. error in each bin
- Will then allow meaningful measurements (e.g., x10 stats)

Really need the statistics...
B Physics

Very few analyses of interest are systematics limited

- Already a 1 fb\(^{-1}\) publication, many 1 fb\(^{-1}\) prelim. and in pipeline
- Discussions of best way to access the p20 data and start using it asap, 2 fb\(^{-1}\) results soon after end of its collection
- Processing of some subsamples with extended AA?

B\(_s\) System

Probe all parts of the \(B\(_s\)\) system: \(m_s\), \(m_s\), \(\Gamma_s\) & other CP-violating tests

\[
\text{PRL 97 (2006) 021802}
\]

\(17 < m_s < 21 \text{ ps}^{-1}\) @ 90% C.L.

- First-ever two-sided limit, but only a limit!
- Need significance of 3\(\sigma\) and then 5\(\sigma\)
- How to get there?
B_s Oscillations

Add statistics and...

- Add channels: $B_s^0 \rightarrow D_s \pi$, $eD_s \pi$, $\bar{D}_s \rightarrow KK^*$, $\bar{D}_s \rightarrow KK_S$

 Nasty reflections, solved

- Added bandwidth? Also pay attention to triggers

Significance of Signal

\[
\frac{1}{\mathcal{B}} = \sqrt{\frac{D^2}{2}} e^{\frac{(\langle K \rangle \bar{m}_s \bar{m}_s - 1)^2}{2}} \sqrt{S + B} \frac{1}{D_p}
\]

~20% improvement
B_s Oscillations

- Add channels:
 - $B_s^0 \to D_s \ell \nu$
 - $eD_s \ell \nu$
 - $D_s \to KK^*$
 - $D_s \to KK_S$

 \[\text{Nasty reflections, solved} \]

- Added bandwidth?

\[\text{Significance of Signal} \]

\[\frac{1}{\sqrt{2}} = \sqrt{\frac{D_p^2}{2}} e^{\frac{(<K>\overline{m}, \overline{m})^2}{2}} \frac{S}{\sqrt{S + B}} \frac{1}{D_p} \]

Scale factors to proper time error

Mass and vertex constraint
B_s Oscillations

- Add channels

 \[B_s^0 \quad D_s \quad K \]
 \[D_s \quad K^* \quad K_K \]

- Added bandwidth? ~20% improvement

- "Tagging Power", \(\mathcal{D}^2 \sim 2.5\% \) for opposite-side flavor tagger

\[
\text{Significance of Signal} \quad \frac{1}{\sqrt{2}} = \sqrt{\frac{\mathcal{D}^2}{2} e^{(\text{<K>}_{m_s}^2/m_s^2)} \frac{(S - B/D_p)}{2}}
\]

- MC predictions, try to calibrate with data, \(\mathcal{D}^2 \sim 2.5\% \) surprisingly high, requires further study!

- If true, gain a factor \(\sqrt{2} \)

- Combine to single tag variable

- Same-side tag

\[u, d, s \quad K^+, K^0, \bar{K}, \bar{K}^* \]
Projections

Integrated luminosity to reach 3\(\sigma\) significance?

- Only existing semileptonic modes, caveats of previous page

\[3\sigma \text{ signif. with } \sim 2.2 \text{ fb}^{-1} \]

- ...and it leaves out one of the most important factors, Layer 0!

For \(m_s = 17.4 \text{ ps}^{-1} \)
Significance of Signal
\[\frac{1}{\sigma} = \sqrt{\frac{D^2}{2}} \]

\[e^\left(\frac{(K - D) m_s}{2} \right) \]

\[\frac{S}{\sqrt{S + B}} \frac{1}{D_p} \]

- Improvement due to better proper time resolution with Layer 0

- Old studies (D0 Note 4418) at least showed

Semileptonic
\[t \sim 150 \text{ fs} \quad \sim 135 \text{ fs} \]

Hadronic
\[t \sim 100 \text{ fs} \quad \sim 75 \text{ fs} \]

but just need to try w/ Layer 0 hits and see

\[m_s = 17.33 \text{ ps}^{-1} \]

\[R = \frac{t \text{ w/ 0 Layer 0 SMT}}{t \text{ w/ Layer 0 SMT}} \]
B_s Oscillations

Hadronic decay modes

- **Control**
 - MC
 - B^0_d + D^*

 - $B_s^0
ightarrow D^+ \pi^-$
 - $D_s^0 [K^+, K^-]$
 - $D_s^0 \Delta^+_s$
 - $D_s^0 \rho^-$
 - $D_s^0 \pi^+ \pi^-$

- **Data**
 - D0 Cuts
 - Signal-Monte-Carlo
 - partial rekonstruiertel B-Zerfall
 - Kombinatorik

- **Use K-factors**
 - $\# / 0.1 \text{GeV}$
 - $m_{D_s\pi} (\text{GeV})$

- **No K-factor**
 - $D_s e$

- **Data**
 - $B_s^0 \square$ all 190 ± 15
 - $B_s^0 \square$ $D_s \square$ 27

- **Thorsten Kuhl, Catrin Bernius**

- **Measure consistent lifetime!**
- **Use composition from MC**
Width Difference, Δs

- Include estimated improvements on CP asymmetry A_{SL}

Could look like:

- $\bf D_{\Omega}$ - combined
- $B_s \rightarrow J/\psi\pi$ asymmetry band
 - A_{sl} constraint

$$\tan(\phi) = -0.01 \pm 0.16 \text{ ps}^{-1}$$

- $\bf D_{\Omega}$ L=2/fb
- $B_s \rightarrow J/\psi$ asymmetry band
 - A_{sl} constraint

$$\tan(\phi) = -0.01 \pm 0.08 \text{ ps}^{-1}$$

- 2 fb^{-1}

- Enough stats, start flavor tagging other side
Rare Decays

- Improvement with Likelihood ratio method

Other

- "Strangely beautiful baryon",
- $\mathbf{b} \rightarrow J/\psi \Xi$
- (Extended AA)
- Lifetimes, etc.
- Spectroscopy B_{s}^{**}, D_{s}^{**}
- all benefit from stats
"Primary D0 QCD WG Goals are only weakly related to 2fb-1 sample"

Getting results out the door, e.g., aspire to:

- Personpower shortfall, group members spend all their time on JES (necessity, i.e., 1–3% error in JES, 5–30% error in cross section)

JES uncertainties about same size as PDF uncertainties

- JES uncertainties about same size as PDF uncertainties
QCD

...but with JES subcorrections, \((p_T, y)\), ready to roll

Inclusive Jets

Dijets

Multijets

Isolated Photons (pub, nothing from CDF)

Diphotons (100 x more than CDF)

Jet properties, correlations, heavy flavor

2 fb\(^{-1}\) ?

Primary Effect:
- Reach higher \(p_T\) / Mass
- Study Rare Processes
 - w/ Small Cross Sections
 - Multi-Jet Production
 - Tail of Delta Phi Distribution
- Study Processes More Differential

Secondary Effects:
- Improved Understanding of Systematics
 - with more Data
 - Jet Energy Scale
 - Photon Purity

Keep checking for (unexplained) anomalies!

Diffractive Physics

- Pots can go in when lumi low enough
- Heavy flavor & Z diffractive production
What do we need to do to get at all this glorious physics?

Regular commissioning (Bob Hirosky's talk) - requires work!

- Lepton ID's not yet fully efficient (although many xxx certs "mature", take less time for p20 efficiencies, etc., in the end)
- tracking efficiency low
- problems like 3rd superbunch SMT loss
- calorimeter needs calibrating! Data quality documentation/stability

Taking advantage of what we already have - requires work!

- e.g., using CPS/FPS for their intended purpose...

Taking advantage of improvements, e.g., Layer 0, AFEIIIt - requires work!

- b-tagging, tuning of smearing of JLIP (part of NN)
- determination of resolution with Layer 0 hits (B_s oscillations)
- using AFEIIIt in tracking, timing information?
Mitigating effects of high lumi running (Guennadi's talk) - requires work!

- ID development for high lumi
- effects on tracking and calorimetry
- using trigger upgrades effectively
- keeping reco time under control

Physics analysis strategy - requires work!

- keep internal combinations in mind in preparation for combinations with other experiments (separate analyses can be important for x-checks, but need to be thought out early on for consistency)
- data of higher quality will keep coming in! Don't take too long @ L/2 if not appropriate. Most results will be superceded.
- Is 2 fb^{-1} enough to justify an update? Sometimes yes, sometimes no. Shooting for stability if systematics limited.
- Keep the investment in common tools such as CAF/CAFE continuing, and it will continue to pay back for p20
By now, after this many years of running, many experiments would be considered "mature"
By now, after this many years of running, many experiments would be considered "mature"

...but Run 2b upgrades \(\longrightarrow\) Mid-Life Crisis \(\longrightarrow\) Buy a Ferrari!
By now, after this many years of running, many experiments would be considered "mature"

...but Run 2b upgrades \rightarrow Mid-Life Crisis \rightarrow Buy a Ferrari!

Commissioning, taking advantage of improvements \rightarrow Learn how to drive it (well!)
By now, after this many years of running, many experiments would be considered "mature"

...but Run 2b upgrades \rightarrow Mid-Life Crisis \rightarrow Buy a Ferrari!

Commissioning, taking advantage of improvements \rightarrow Learn how to drive it (well!)

High luminosity running \rightarrow Take up street racing
By now, after this many years of running, many experiments would be considered "mature"

...but Run 2b upgrades \(\rightarrow\) Mid-Life Crisis \(\rightarrow\) Buy a Ferrari!

Commissioning, taking advantage of improvements

Learn how to drive it (well!)

High luminosity running \(\rightarrow\) Take up street racing

Now isn't that more interesting/exciting?
By now, after this many years of running, many experiments would be considered "mature"

...but Run 2b upgrades \(\text{Mid-Life Crisis} \rightarrow\) Buy a Ferrari!

Commissioning, taking advantage of improvements

High luminosity running \(\text{Learn how to drive it (well!)} \rightarrow\) Take up street racing

Now isn't that more interesting/exciting?