Conversion Factors:
1 m = 3.281 ft; 1 in = 2.54 cm; 1 mile = 5280 ft; 1 mile = 1.61 km;
1 hr = 3600 s; 1 liter = 1000 cm3; 2π radians = 360$^\circ$; 1 N = 1 kg·m/s2; 1 Hz = 1 cycle/s.

Standard Prefixes:
- Giga G 10^9
- Mega M 10^6
- Kilo k 10^3
- Centi c 10^{-2}
- Milli m 10^{-3}
- Micro µ 10^{-6}
- Nano n 10^{-9}

Velocity, speed: \(v = \frac{\Delta x}{\Delta t} \); Average speed over time interval \(\Delta t \): \(v_{\text{ave}} = \frac{x_f - x_i}{t_f - t_i} \); Distance traveled: \(d = vt \).

Acceleration: \(a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{t_f - t_i} \).

Density: \(\rho = \frac{m}{V} \).

Newton’s Second Law: \(F = ma \); Weight: \(W = mg \) \((g = 9.8 \text{ m}/\text{s}^2)\).

Force due to a spring: \(F_{\text{spring}} = -k\Delta x \).

Pressure: \(P = \frac{F_A}{A} \).

Kinetic energy: \(KE = \frac{1}{2}mv^2 \); Potential energy due to gravity: \(PE_{\text{grav}} = mgh \), stored in spring: \(PE_{\text{spring}} = \frac{1}{2}kx^2 \).

Conservation of energy: \(KE_i + PE_i = KE_f + PE_f \).

Frequency, period: \(f = \frac{1}{T} \); Frequency mass/spring system: \(f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \); Frequency of pendulum: \(f = \frac{1}{2\pi} \sqrt{\frac{g}{L}} \).

Wavelength: \(\lambda = \frac{v}{f} \).

Speed of Sound:
(i) On a string or wire: \(v = \sqrt{\frac{T}{\mu}} \);
(ii) In air: \(v = (331.3 + 0.6t) \text{ m/s}, \) where \(t \) is temperature in °C, i.e., at room temperature \((t = 20^\circ \text{C})\), \(v_{\text{sound}} = 343.3 \text{ m/s} \).

Importance of diffraction: if encountering an opening of approximate diameter \(d \), or an obstacle of typical size \(d \), diffraction is (i) important for \(\lambda \geq d \); (ii) much less important for \(\lambda \ll d \).

Interference pattern, two separated sources: constructive interference (“loud”) at angles from the perpendicular from two sources given by \(\sin \theta = \frac{m\lambda}{d} \), where \(m = 0, \pm 1, \pm 2, \ldots \).

Change in frequency due to Doppler Effect:
(i) Source moving, observer stationary: \(f_{\text{obs}} = f_s \left(\frac{v_{\text{sound}}}{v_{\text{sound}} + v_s} \right) \), (- approaching, + receding);
(ii) Observer moving, source stationary: \(f_{\text{obs}} = f_s \left(\frac{v_{\text{sound}} + v_{\text{obs}}}{v_{\text{sound}}} \right) \), (+ approaching, - receding);

Velocity of wave on a string or wire of tension \(T \) and mass per unit length \(\mu = m/L \): \(v_{\text{wave}} = \sqrt{\frac{T}{\mu}} \).

Harmonic series for standing waves on a string of length \(L \) and mass per unit length \(\mu = m/L \):
\(f_n = nf_1 = \frac{n \nu}{2L} = \frac{n}{2L} \sqrt{\frac{T}{\mu}}, \lambda_n = \frac{2L}{n}, \) where \(n = 1, 2, 3, \ldots \).
Harmonic series for standing waves in a tube of length L open at both ends:

$$f_n = n f_1 = \frac{n v}{2 L}, \quad \lambda_n = \frac{2 L}{n}$$

Harmonic series for standing waves in a tube of length L open at one end, closed at other:

$$f_n = n f_1 = \frac{n v}{4 L}, \quad \lambda_n = \frac{4 L}{n}, \quad n = 1, 3, 5, \ldots, \text{i.e., } n \text{ odd.}$$

Beats: two tones f_A and f_B presented simultaneously, beat frequency $f_{\text{beat}} = |f_B - f_A|$ is the frequency of the resultant amplitude modulation at a sum frequency of $f_{\text{sum}} = \frac{(f_A + f_B)}{2}$.

Interference pattern, two separated sources: constructive interference (“loud”) at angles from the perpendicular from two sources given by $\sin \theta = \frac{m \lambda}{d}$, where $m = 0, \pm 1, \pm 2, \ldots$.

Fourier Synthesis and Analysis:

Any complex periodic wave with fundamental frequency f_1 can be built up using Fourier synthesis from an infinite harmonic series (i.e., $f_n = n f_1$) of sinusoidal waves of different amplitudes, i.e., $A_n \sin(2 \pi f_n t)$. Some standard or well-known waves are:

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Fourier Amplitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sine</td>
<td>$A_1 = \text{constant}, \text{all other } A_n = 0$</td>
</tr>
<tr>
<td>Sawtooth (Ramp)</td>
<td>$A_n = \frac{A_1}{n}, \text{ } n = 1, 2, 3, \ldots$</td>
</tr>
<tr>
<td>Square</td>
<td>$A_n = \frac{A_1}{n}, \text{ } n = 1, 3, 5, \ldots$</td>
</tr>
<tr>
<td>Triangle</td>
<td>$A_n = \frac{A_1}{n^2}, \text{ } n = 1, 3, 5, \ldots$</td>
</tr>
</tbody>
</table>

Sound Levels:

dB difference between two signals: $\text{dB} = 10 \log \frac{I_1}{I_2}$.

Sound Intensity Level (L_i or SIL in dB): $L_i = 10 \log \frac{I_i}{I_0}$, relative to a reference sound intensity $I_0 = 10^{-12} \text{ W/m}^2$.

Sound Pressure Level (L_p or SPL in dB): $L_p = 20 \log \frac{P_p}{P_0}$, relative to a reference sound pressure $p_0 = 2 \times 10^{-5} \text{ Pa}$ or N/m^2.

In most normal situations, $L_p = L_i$.

Sound Power Level (in dB) of a source: $L_W = 10 \log \frac{W}{W_0}$, relative to a reference sound power $W_0 = 10^{-12} \text{ W}$.

Inverting a logarithm: if $x = \log(y)$, then $y = 10^x$.

Definition of Intensity: $I = \frac{W}{A}$, where W is power, and A is area.

Variation of Intensity with Distance: $I = \frac{W}{4\pi r^2}$ where the source has sound power of W Watts and the intensity is measured a distance of r meters away.

Gain = \frac{\text{Output Quantity}}{\text{Input Quantity}}, \text{ Power Gain} = 10 \log(W_0/W_i)$.

On an equal temperment scale (where one octave, i.e., a doubling or halving of frequency, is twelve semitones):

to move up from a note of frequency f_0 by n semitones to frequency f:

$$f = f_0 (1.0596)^n$$

and to move down n semitones:

$$f = \frac{f_0}{1.0596^n}.$$